Reinforcement Learning for Weakly-Coupled MDPs and an Application to Planetary Rover Control

نویسندگان

  • Daniel S. Bernstein
  • Shlomo Zilberstein
چکیده

Weakly-coupled Markov decision processes can be decomposed into subprocesses that interact only through a small set of bottleneck states. We study a hierarchical reinforcement learning algorithm designed to take advantage of this particular type of decomposability. To test our algorithm, we use a decision-making problem faced by autonomous planetary rovers. In this problem, a Mars rover must decide which activities to perform and when to traverse between science sites in order to make the best use of its limited resources. In our experiments, the hierarchical algorithm performs better than Q-learning in the early stages of learning, but unlike Qlearning it converges to a suboptimal policy. This suggests that it may be advantageous to use the hierarchical algorithm when training time is limited.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic Over-Subscription Planning Using Hierarchies of MDPs

In over-subscription planning (OSP), the set of goals is not achievable jointly, and the task is to find a plan that attains the best feasible subset of goals given resource constraints. Recent classical OSP algorithms ignore the uncertainty inherent in many natural application domains where OSPs arise. And while modeling stochastic OSP problems as MDPs is easy, the resulting models are too lar...

متن کامل

Planetary Rover Control as a Markov Decision Process

Planetary rovers must be effective in gathering scientific data despite uncertainty and limited resources. One step toward achieving this goal is to construct a highlevel mathematical model of the problem faced by the rover and to use the model to develop a rover controller. We use the Markov decision process framework to develop a model of the rover control problem. We use Monte Carlo reinforc...

متن کامل

Mini/Micro-Grid Adaptive Voltage and Frequency Stability Enhancement Using Q-learning Mechanism

This paper develops an adaptive control method for controlling frequency and voltage of an islanded mini/micro grid (M/µG) using reinforcement learning method. Reinforcement learning (RL) is one of the branches of the machine learning, which is the main solution method of Markov decision process (MDPs). Among the several solution methods of RL, the Q-learning method is used for solving RL in th...

متن کامل

Lazy Approximation for Solving Continuous Finite-Horizon MDPs

Solving Markov decision processes (MDPs) with continuous state spaces is a challenge due to, among other problems, the well-known curse of dimensionality. Nevertheless, numerous real-world applications such as transportation planning and telescope observation scheduling exhibit a critical dependence on continuous states. Current approaches to continuous-state MDPs include discretizing their tra...

متن کامل

Multiple-Goal Reinforcement Learning with Modular Sarsa(O)

We present a new algorithm, GM-Sarsa(O), for finding approximate solutions to multiple-goal reinforcement learning problems that are modeled as composite Markov decision processes. According to our formulation different sub-goals are modeled as MDPs that are coupled by the requirement that they share actions. Existing reinforcement learning algorithms address similar problem formulations by fir...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001